Parallel Newton Methods for Sparse Systems of Nonlinear Equations
نویسنده
چکیده
In this paper we give the results found in solving consistent sparse systems of nonlinear equations by an inexact Newton and Quasi-Newton method both combined with a block iterative row-projection linear solver of Cimmino-type. A simple partitioning of the Jacobian matrix was used for solving two nonlinear test problems, that is a tridiagonal problem of size n = 131072 and a nonlinear Poisson problem with n = l l grid with l up to 64. The results are obtained on the CRAY T3E installed at CINECA (Bologna, Italy) with 32 nodes. The Fortran code runs under MPI implementation.
منابع مشابه
Truncated Block Newton and Quasi-Newton Methods for Sparse Systems of Nonlinear Equations. Experiments on Parallel Platforms
متن کامل
Nonlinear Overlapping Domain Decomposition Methods
We discuss some overlapping domain decomposition algorithms for solving sparse nonlinear system of equations arising from the discretization of partial differential equations. All algorithms are derived using the three basic algorithms: Newton for local or global nonlinear systems, Krylov for the linear Jacobian system inside Newton, and Schwarz for linear and/or nonlinear preconditioning. The ...
متن کاملParallelized numerical methods for large systems of differential–algebraic equations in industrial applications
Based on a hierarchical modular modeling the large nonlinear systems of differential algebraic equations arising from industrial applications in electric circuit simulation or in dynamic process simulation of chemical plants can be structured into subsystems. Parallelized numerical methods for solving such systems are considered at the level of nonlinear and linear equations. Merging subsystems...
متن کاملOn Newton-hss Methods for Systems of Nonlinear Equations with Positive-definite Jacobian Matrices
The Hermitian and skew-Hermitian splitting (HSS) method is an unconditionally convergent iteration method for solving large sparse non-Hermitian positive definite system of linear equations. By making use of the HSS iteration as the inner solver for the Newton method, we establish a class of Newton-HSS methods for solving large sparse systems of nonlinear equations with positive definite Jacobi...
متن کاملAdditive Operator Splitting Methods for Solving Systems of Nonlinear Finite Difference Equations
There exists a considerably body of literature on the development, analysis and implementation of multiplicative and additive operator splitting methods for solving large and sparse systems of finite difference equations arising from the discretization of partial differential equations. In this note, we will review the Newton–Arithmetic Mean and the Modified Newton–Arithmetic Mean methods for s...
متن کامل